Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats.
نویسندگان
چکیده
We generated spinal motoneurons from embryonic stem (ES) cells to determine the developmental potential of these cells in vitro and their capacity to replace motoneurons in the adult mammalian spinal cord. ES cell-derived motoneurons extended long axons, formed neuromuscular junctions, and induced muscle contraction when cocultured with myoblasts. We transplanted motoneuron-committed ES cells into the spinal cords of adult rats with motoneuron injury and found that approximately 3,000 ES cell-derived motoneurons (25% of input) survived for >1 month in the spinal cord of each animal. ES cell-derived axonal growth was inhibited by myelin, and this inhibition was overcome by administration of dibutyryl cAMP (dbcAMP) or a Rho kinase inhibitor in vitro and in vivo. In transplanted rats infused with dbcAMP, approximately 80 ES cell-derived motor axons were observed within the ventral roots of each animal, whereas none were observed in transplanted rats not treated with dbcAMP. Because these cells replicate many of the developmental and mature features of true motoneurons, they are an important biological tool to understand formation of motor units in vitro and a potential therapeutic tool to reconstitute neural circuits in vivo.
منابع مشابه
The effect of acetyl l-carnitine on ultrastructure of injured motoneuron synapses in adult rat
Background and Objective: Spinal cord compression is a relatively common neurological complication in developing country. This study was designed to assess neuroprotective effect of acetyl L-carnitine. Materials and Methods: 16 adult Sprague Dawley rats weighing 250 to 300 g were divided into 4 randomized groups, namely, A-laminectomy with daily intraperitoneal injection of acetyl L-carnitine....
متن کاملInduction of c-Jun phosphorylation in spinal motoneurons in neonatal and adult rats following axonal injury.
This study aims to address if phosphorylation of the transcription factor c-Jun is associated with lesion-induced death of spinal motoneurons, and if this cellular response is modulated by glial-cell-line-derived neurotrophic factor (GDNF). We found that after both distal axotomy and root avulsion, spinal motoneurons in neonatal rats expressed phosphorylated c-Jun (p-c-Jun) and almost all injur...
متن کاملEffects of congenital hypothyroidism on the morphology of trigeminal motoneuron assessed by the Golgi staining method in rats
Introduction: Appropriate thyroid hormone (TH) levels are essential during the critical period of brain development, which is associated with the growth of axons and dendrites and synapse formation. In rats, oral motor circuits begin to reach to their adult pattern around 3 weeks after birth, the period in which alteration from sucking to biting and chewing occurs (weaning time). Trigeminal ...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملCharacterization of axon formation in the embryonic stem cell-derived motoneuron.
The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed chara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 18 شماره
صفحات -
تاریخ انتشار 2004